www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 3 March 2021 | ISSN: 2320-2882

IJCRT.ORG ISSN : 2320-2882

APy, 'NTERNATIONAL JOURNAL OF CREATIVE
@aa% RESEARCH THOUGHTS (1JCRT)

An International Open Access, Peer-reviewed, Refereed Journal

Performance Improvement Of LRU Page
Replacement Algorithm

! Greetta Pinheiro, 2Madhubala Rathore

'Research Scholar, 2Assistant Professor
1SC&SS Jawaharlal Nehru University, New Delhi,
!Government College Chourai, Chhindwara, Madhya Pradesh, India

Abstract: The performance of the page replacement algorithms can be improved by augmenting it with some data along with the
algorithm design. This can indeed optimize the time taken for the swapping process. In this system we are augmenting two data
structures with LRU page replacement algorithm, they are doubly circular linked list and hash table. Doubly circular linked list is
used because the traversal between the nodes is easier and faster. Hashing is more efficient in performing optimal searches and
retrievals because it increases speed, better ease of transfer, better retrieval and reduce overhead. Furthermore Hashing can reduce
disk space and access time by inserting and retrieving a page from the main memory in only one seek. Further we are comparing
the performance of the classical LRU page replacement algorithm with the augmented LRU page replacement algorithm in terms
of runtime.

Index Terms - Least Recently Used Page Replacement Algorithm, Optimal page replacement Algorithm, Main Memory,
Cache Memory, Doubly Circular Linked List, Splay Trees, Hash Tables, Skip list.

I. INTRODUCTION

Computer system employs caching techniques to speed up the access to pages [8]. Various page replacement algorithms
are used for swapping in and swapping out the pages from the cache memory. Whenever an application requests access to a
page(s) on disk, the operating system retrieves the requested page(s) or the portion of the requested page and stores it in the
cache memory. Subsequent accesses to these pages which are already accessed and are residing.inside the cache memory can
be performed by accessing it from the cache rather than accessing it from the disk. Accessing the cache is much faster than
accessing the disk, performance is improved especially when the page is frequently accessed.

One among the common and widely used page replacement algorithm is LRU (Least Recently Used) [1][2]. The LRU
page replacement algorithm choose a page that has not been accessed for the longest time for swapping out of the cache
memory and swaps in the requested new page in place of the swapped out page.

For example, suppose the cache memory can store three pages, page 1 was accessed 10 seconds ago, page 2 was accessed
20 seconds ago, and page 3 was accessed 30 seconds ago. Thus, when a new page is to be cached, page 3 will be discarded to
make room for the new page to be cached because page 3 was least recently accessed [8]. i.e. it was residing in the cache
memory without getting accessed for longest time.

LRU is hard to implement but its performance is fairly close to the Optimal Page Replacement algorithm, which is
taken as a benchmark for the comparison of various page replacement policies. Furthermore it has been proved that LRU
can never have a result more than N-times more page faults than Optimal Page replacement algorithm, where N is
proportional to the number of pages in the managed pool. Main advantage of the LRU algorithm is that it is amenable to full
statistical analysis. Hence the optimization of LRU page replacement policy can indeed increase the performance of the Cache
memory.

There are three main operations which are carried out every page replacement algorithm: inserting a page into the cache,
deleting a page from the cache and searching a page. All these operations are dependent on various data structures that are
been employed in the form of page table. The scheme and complexity of each these data structures vary. Therefore, an efficient
data structure or combination of various data structures can indeed improve the performance of page replacement algorithm.

The usage of the data structure in its original form might not serve in improving the efficiency of the page replacement
algorithm. In order to make the data structure efficient for our purpose, we have to do some modification and use them.
Modifying the data structures by adding additional parameters or information is called data augmentation. It is not always
possible that data augmentation can give better performance, it needs to be verified by making use of the trial and error
method [1][5].

In our proposed system we use two different data structures namely doubly circular link list and hash table for
augmentation to LRU page replacement algorithm. Improving the performance is the main goal behind the design of any
page replacement algorithm [2]. Our goal is also to improve the performance of LRU page replacement algorithm in terms
of runtime using these augmented data structure[4].

[JCRT2103050 ] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 397


http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 3 March 2021 | ISSN: 2320-2882

1. LITERATURE RE REVIEW

The design of page replacement algorithms were mainly focused on the computational time. Efforts were made to reduce the
computation time but the 1/0 time was not considered. The access time of main memory and external memory is different. The main
memory access time is measured in terms of Nano seconds, whereas the access time of external memory such as disk is in terms of
milli seconds, here there is a large difference between the access time of both these memories [5]. Whenever a page is accessed from
the main memory, it is called as a hit and it takes less access time. If the page is not there in main memory, this can be termed as a
miss. Here the page should be accessed from the disk and it takes more access time.

The access time can be reduced if we can increase the number of hits or the hit ratio. This can increase the efficiency of large
computations where the amount of data required for the application will be large than the main memory size, for example
computational biology, database systems, VLSI verifications, image processing etc.

The main idea behind LRU page replacement algorithm is that, the pages which are referred heavily in the last few instructions
can have a chance to be referred in the next few instructions as well. So those pages should be retained in the main memory. When a
page fault occurs, the LRU algorithm replaces the page which is not been used for the longest time.

The hybrid of LRU and LFU performs better than other page replacement algorithms such as Second-chance Frequency Least
Recently Used (SF-LRU), Least Recently Frequently Used (LRFU), Weighting Replacement Policy (WRP) etc. [9],[11],[10].

In Linux systems, LRU page replacement along with tree which has three levels of page table is been used. These three levels
include page directory, page middle directory and page table entries [5].

In our proposed system we implement LRU page replacement algorithm with augmented doubly circular link list and hash table
in order to improve the performance.

I1l. DETAILED PROBLEM DEFINITION

Main memory is the storage element which is used to store the programs and data. Whenever the processor requires accessing
data, it is copied from secondary memory to main memory [3]. Retrieving the data from the main memory, takes a considerable
amount of time for the processor. In order to reduce it, cache memory is been employed. Access time for the cache memory is less
than the main memory thus speeding up the access to pages [7]. When a processor requires a page, it initially checks the cache
memory. If the page is found (i.e a hit), it will be accessed and used for further processing. Thus main memory is not used for
accessing the page if the page is found in cache. Whereas if the page is not found in cache (page fault or miss), main memory will be
accessed. The required page will be swapped out from the main memory and swapped in to the cache at some location. Various page
replacement algorithms are used for swapping in and swapping out pages from cache memory. One among the widely used page
replacement algorithm is LRU. It chooses a page which has not been accessed recently and swaps in the new requested page in place
of it. The time for searching a page in the cache memory is not constant. It varies from one data structure to another. An LRU
implementation using stack may take longer time than that implemented using a queue. The main goal of any page replacement
algorithm is to improve the performance in terms of runtime. This access time can be reduced by augmenting some data structures.
Our proposed system uses augmentation of doubly circular linked list and hash table for designing the LRU page replacement
algorithm which in turn reduce the runtime.

IV. SOLUTION METHODOLOGY

A. Augmentation of Doubly Circular link list

The technique used for designing the doubly circular linked list for LRU page replacement-algorithm is by making use of moved
to Front (MTF) self-organizing heuristic technique [6]. The heuristic that moves the referred page to the head of the doubly circular
linked list (Refer Figure 1) so that it is found out faster next time. This technique can speed up the linear searching performance if
the referred page is likely to be searched again. This technique design improves the efficiency of the linear search of the referred
pages by moving the more frequently accessed page towards the head of the doubly circular linked list (Refer Figure 2).

Prev { ata | Next | Prev | Data | Neit | Prev | Dety | Nt | ey | Dats | Nt
Ares of the node e—) Adoress ofthe node —) Adoress ofthe ode =1 Adaes ofhenode

Figure 1. Doubly circular linked list
B. Augmentation of Hash Table

Hash table data structure makes use of a hash function to map the keys with the array positions. Out of the many different hashing
techniques available we are using chaining technique of hashing so that unlimited number of collisions can be handled and also
unlimited number of elements can be stored. Here we don’t require apriori knowledge of the number of elements required to be
stored.

[JCRT2103050 ] International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org | 398


http://www.ijcrt.org/

www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 3 March 2021 | ISSN: 2320-2882

|3 y ) }—4 4‘,_,| 9 .

— Accessed node

Accessed node is
head node

Figure 2. MTF Technique

V. DETAILS OF ANALYSIS

Inalinked list if a particular page is to be searched, each page (node) in the list has to be sequentially compared with the referenced
page till the required page (node) is reached. Thus if we have to retrieve the n™" page it takes O(n) operations.

In contrast the doubly circular linked list rearranges the pages keeping the most recently accessed page at the head of the list.
Generally in this searching technique the chance of accessing the page which has been accessed many times before is higher than
the chances of accessing the page that has not been accessed frequently. This keeps the most recently accessed page as the head of
the list resulting in reducing the number of comparisons which is required on an average for reaching the desired page. This leads
to better efficiency reducing the search query time.

Hashing is the technique which uses almost constant time in case of searching, insertion and deletion of an element. It is similar to
an array with its index behaving as a key. Each of the key (index) can be used for accessing the page in a constant time. Hash table
is a data structure which is used to access the value or a page using a hash function which generates a key corresponding to the
associated page. Hashing is a more reliable and flexible method for page retrieval than any other table data structure in terms of
speed. A significant amount of difference in retrieval time can been seen when the number of entries in the hash table is large that
is in terms of thousands and more. It takes O(1) time for searching an item inside the hash table.

V1. RESULTS AND DISCURSION

The hardware specification of the system used for execution is OS X EI Capitan version: 10.11, processor: 1.4 GHz Intel core i5,
Memory: 4GB 1600 MHz, Graphics: Intel HD Graphics 5000 1536 MB. The execution results obtained after running same parameter
10 times, we took the average value for each corresponding parameter. Thus we have tabulated the results as shown below,

Least Recently Used Page Replacement Algorithm (Using stack)

Numberof | 3 4 5 § 1 8 9 10
Framesin
cache
Numberof | 10 9 9 § 1 1 1 1
Page Faults
Numberof | 2 3 3 4 5 5 5 b

Hits
Hit Ratio | 16,66 25 5 2% 4166 | 4166 | 4166 | 4166
(4
Runtime | 0,016000 | 0.015000 | 0,016000 | 0.016000 | 0.015000 | 0.016000 | 0.016000 | 0.016000
)
Figure 3. Results of LRU Algorithm using stack

Least Recently Used Page Replacement Algorithm (Proposed)
Numberof | 3 4 5 b 1 8 9 10
framesin
tache
Numberof | 10 9 9 8 1 1 1 1
Page Faults
Numberof | 2 3 3 4 5 5 5 5
Hits
HitRatio | 16,66 I 2 3 4166 | 4166 | 4186 | 4166
t
Runtime | 0,000027 | 0.000069 | 0.000065 | 0.000068 | 0.000068 | 0.000067 | 0.000067 | 0.000067
(ms)

Figure 4. Results of LRU Algorithm using Doubly Circular Linked List and Hashing
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Here we have compared the result of existing LRU page replacement algorithm using stack with our proposed augmented LRU page
replacement algorithm. The above results shows that while using the same dataset on both the algorithms, proposed augmented LRU
page replacement algorithm shows better performance in terms of runtime.

VII. CONCLUSION

In our proposed system we used LRU page replacement algorithm with augmented doubly circular link list and hash table. We
implemented the system and compared its performance with the classical LRU page replacement algorithm and found that our
proposed system shows better performance than the classical LRU, i.e. the proposed LRU with augmented data structures will give
a minimum of 50 percent improvement than the LRU using stack. The performance of LRU page replacement algorithm can be
improved by using augmented data structures instead of developing new algorithms. The proposed system can be used for different
applications such as operating systems, web cache, databases etc.
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